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Biological context

The lipocalins form a large family of extracellular
proteins which serve for transport and storage of sec-
ondary metabolites such as lipids, pheromones or
prostaglandins (Flower, 1996). In spite of large di-
versity at the sequence level, lipocalins are structural
homologues: a single eight-stranded antiparallel β-
barrel with an attached α-helix forms the distinct
‘lipocalin scaffold’. One end of the barrel is opened to
the solvent and contains a ligand binding site. A set
of four loops connecting consecutive strands confer
specificity for ligand binding. Recently, the lipocalin
scaffold was used to engineer proteins with tailored
specificity for non-natural ligands. Such designed
lipocalins can be considered as antibody mimics and
were thus named ‘anticalins’ (for a review, see Skerra,
2000). Starting with the bilin-binding protein (BBP)
from P. brassicae, the anticalin ‘FluA’ with binding
affinity toward fluorescein was created using a com-
binatorial protein design approach. Compared to the
amino acid sequence of BBP, FluA contains 20 point
mutations and binds fluorescein with high specificity
and affinity (Beste et al., 1999). As a step toward ex-
ploring the structural basis of molecular recognition
by anticalins and lipocalins in general, we have over-
expressed and purified several stable isotope labeled
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samples of FluA(R95K). Here we report the nearly
complete 15N, 1H and 13C resonance assignments.

Methods and experiments

FluA(R95K) protein containing a C-terminal Strep-
tagII (Skerra and Schmidt, 2000) was overexpressed
in E. coli KS474 using the plasmid pBBP21-
FluA(R95K) essentially as described (Beste et al.,
1999). Bacterial cell cultures were grown at 37 ◦C in
(i) rich LB medium to express unlabeled FluA(R95K)
(sample 1), in (ii) M9 minimal medium contain-
ing 13C6-glucose and/or 15NH4Cl as sole carbon
and nitrogen sources to produce either uniformly
13C/15N-labeled (sample 2) or 15N-labeled (sample
3) FluA(R95K), or in (iii) a M9 minimal me-
dium containing 15NH4Cl in 30% H2O/70% D2O to
synthesize ∼50% deuterated, uniformly 15N-labeled
FluA(R95K) (sample 4). In addition, a fraction of
sample 1 was lyophilized and dissolved in D2O yield-
ing sample 1b. Sample purity (>95%) and stable
isotope labeling were verified by SDS-PAGE and
MALDI-TOF mass spectrometry. All NMR samples
were prepared at 0.7 mM protein concentration in
90% H2O/10% D2O (150 mM NaCl, 10 mM Na-PO4,
0.2 mM EDTA, 50 mM benzamidine, pH = 6.4).

NMR spectra were recorded at 25 ◦C on Varian
INOVA NMR spectrometers operating at 1H res-
onance frequencies of 600, 750 or 900 MHz.
Resonance assignments were obtained by combin-
ing (i) 2D [15N,1H]-TROSY (Pervushin et al.,
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Figure 1. (A) 2D [15N,1H]-TROSY spectrum (Pervushin et al.,
1997) recorded on a 900 MHz Varian INOVA spectrometer (25 ◦C)
for uniformly 15N-labeled and 50% deuterated FluA(R95K). The
peaks are labeled using the one-letter code for amino acids. The
peaks of Val 2 and Asn 100 are close to the noise level and their
positions are indicated by boxes. (B) 2D [15N,1H]-HSQC spectrum
recorded at 600 MHz with the same maximal evolution times as
the spectrum shown in (A). (C) Chemical shift index (CSI) con-
sensus plot (Wishart and Sykes, 1994) for identification of regular
secondary structure elements. The eight β-strands forming the lipo-
calin β-barrel (black bars) as well as the α-helices (grey bars) are
indicated.

1997; Figure 1) and a 15N-resolved [1H,1H]-
NOESY-[15N,1H]-TROSY acquired for sample 4 at
900 MHz, (ii) 2D [1H,1H]-TOCSY and NOESY ac-
quired for both samples 1a and 1b at 900 MHz,
(iii) 3D HNNCACB, CBCA(CO)NHN, HC(C)H
COSY / TOCSY (Cavanagh et al., 1996) ac-
quired for sample 2 at 600 or 750 MHz, (iv)
reduced-dimensionality 3D Hα/βCα/β(CO)NHN, 3D
HNNCAHA, HACA(CO)NHN, 3D HCCH COSY, 2D
HBCB(CGCD)HD, 1H-TOCSY relayed HCH COSY
(Szyperski et al., 1998; 2002) acquired for sample 2 at
600 and 750 MHz, and (v) 3D 13C- and 15N-resolved
[1H,1H]-NOESY (Cavanagh et al., 1996) acquired,
respectively, for samples 2 and 3 at 750 MHz.

Extent of assignments and data deposition

The combined use of double and triple resonance 3D
spectra along with the 2D homonuclear spectra ac-
quired at 900 MHz provided assignments (Figure 1)
for 95% of the backbone and 13Cβ, and for 91%
of the side chain chemical shifts of FluA(R95K).
The measurement of 15N spin relaxation parameters
(Szyperski et al., 1993) revealed that FluA(R95K) re-
orients with a correlation time of ∼10 ns at 25 ◦C
(confirming that the protein is monomeric in solution).
Thus, the use of TROSY (Pervushin et al., 1997) at
900 MHz dramatically improved the resolution of the
2D [15N,1H]-correlation map (Figures 1A,B), which
facilitated the 15N-1HN spin system identification.
Based on the chemical shift data, the strands forming
the lipocalin β-barrel can be readily identified (Fig-
ure 1C). FluA(R95K) possesses a rather large number
of aromatic residues (5 Phe, 15 Tyr, 7 Trp, 7 His), and
the resonance assignment of the aromatic rings greatly
benefited from employment of the traditional homo-
nuclear approach (Cavanagh et al., 1996) at 900 MHz.
The 1H, 13C and 15N chemical shift data have been
deposited in the BioMagResBank database (accession
number 5756).
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